MR Research Collaboration Team, Siemens Healthineers, Shanghai, China
Abstract:In this technical report, we present SWE-Master, an open-source and fully reproducible post-training framework for building effective software engineering agents. SWE-Master systematically explores the complete agent development pipeline, including teacher-trajectory synthesis and data curation, long-horizon SFT, RL with real execution feedback, and inference framework design. Starting from an open-source base model with limited initial SWE capability, SWE-Master demonstrates how systematical optimization method can elicit strong long-horizon SWE task solving abilities. We evaluate SWE-Master on SWE-bench Verified, a standard benchmark for realistic software engineering tasks. Under identical experimental settings, our approach achieves a resolve rate of 61.4\% with Qwen2.5-Coder-32B, substantially outperforming existing open-source baselines. By further incorporating test-time scaling~(TTS) with LLM-based environment feedback, SWE-Master reaches 70.8\% at TTS@8, demonstrating a strong performance potential. SWE-Master provides a practical and transparent foundation for advancing reproducible research on software engineering agents. The code is available at https://github.com/RUCAIBox/SWE-Master.
Abstract:Recent advances in large language models (LLMs) have enabled software engineering agents to tackle complex code modification tasks. Most existing approaches rely on execution feedback from containerized environments, which require dependency-complete setup and physical execution of programs and tests. While effective, this paradigm is resource-intensive and difficult to maintain, substantially complicating agent training and limiting scalability. We propose SWE-World, a Docker-free framework that replaces physical execution environments with a learned surrogate for training and evaluating software engineering agents. SWE-World leverages LLM-based models trained on real agent-environment interaction data to predict intermediate execution outcomes and final test feedback, enabling agents to learn without interacting with physical containerized environments. This design preserves the standard agent-environment interaction loop while eliminating the need for costly environment construction and maintenance during agent optimization and evaluation. Furthermore, because SWE-World can simulate the final evaluation outcomes of candidate trajectories without real submission, it enables selecting the best solution among multiple test-time attempts, thereby facilitating effective test-time scaling (TTS) in software engineering tasks. Experiments on SWE-bench Verified demonstrate that SWE-World raises Qwen2.5-Coder-32B from 6.2\% to 52.0\% via Docker-free SFT, 55.0\% with Docker-free RL, and 68.2\% with further TTS. The code is available at https://github.com/RUCAIBox/SWE-World
Abstract:In this paper, we present NEMO, a system that translates Natural-language descriptions of decision problems into formal Executable Mathematical Optimization implementations, operating collaboratively with users or autonomously. Existing approaches typically rely on specialized large language models (LLMs) or bespoke, task-specific agents. Such methods are often brittle, complex and frequently generating syntactically invalid or non-executable code. NEMO instead centers on remote interaction with autonomous coding agents (ACAs), treated as a first-class abstraction analogous to API-based interaction with LLMs. This design enables the construction of higher-level systems around ACAs that structure, consolidate, and iteratively refine task specifications. Because ACAs execute within sandboxed environments, code produced by NEMO is executable by construction, allowing automated validation and repair. Building on this, we introduce novel coordination patterns with and across ACAs, including asymmetric validation loops between independently generated optimizer and simulator implementations (serving as a high-level validation mechanism), external memory for experience reuse, and robustness enhancements via minimum Bayes risk (MBR) decoding and self-consistency. We evaluate NEMO on nine established optimization benchmarks. As depicted in Figure 1, it achieves state-of-the-art performance on the majority of tasks, with substantial margins on several datasets, demonstrating the power of execution-aware agentic architectures for automated optimization modeling.
Abstract:Visual Prompt Tuning (VPT) adapts a frozen Vision Transformer (ViT) to downstream tasks by inserting a small number of learnable prompt tokens into the token sequence at each layer. However, we observe that existing VPT variants often suffer from unstable training dynamics, characterized by gradient oscillations. A layer-wise analysis reveals that shallow-layer prompts tend to stagnate early, while deeper-layer prompts exhibit high-variance oscillations, leading to cross-layer mismatch. These issues slow convergence and degrade final performance. To address these challenges, we propose Prompt-Agnostic Evolution ($\mathtt{PAE}$), which strengthens vision prompt tuning by explicitly modeling prompt dynamics. From a frequency-domain perspective, we initialize prompts in a task-aware direction by uncovering and propagating frequency shortcut patterns that the backbone inherently exploits for recognition. To ensure coherent evolution across layers, we employ a shared Koopman operator that imposes a global linear transformation instead of uncoordinated, layer-specific updates. Finally, inspired by Lyapunov stability theory, we introduce a regularizer that constrains error amplification during evolution. Extensive experiments show that $\mathtt{PAE}$ accelerates convergence with an average $1.41\times$ speedup and improves accuracy by 1--3% on 25 datasets across multiple downstream tasks. Beyond performance, $\mathtt{PAE}$ is prompt-agnostic and lightweight, and it integrates seamlessly with diverse VPT variants without backbone modification or inference-time changes.
Abstract:Text-to-video (T2V) diffusion models have achieved rapid progress, yet their demographic biases, particularly gender bias, remain largely unexplored. We present FairT2V, a training-free debiasing framework for text-to-video generation that mitigates encoder-induced bias without finetuning. We first analyze demographic bias in T2V models and show that it primarily originates from pretrained text encoders, which encode implicit gender associations even for neutral prompts. We quantify this effect with a gender-leaning score that correlates with bias in generated videos. Based on this insight, FairT2V mitigates demographic bias by neutralizing prompt embeddings via anchor-based spherical geodesic transformations while preserving semantics. To maintain temporal coherence, we apply debiasing only during early identity-forming steps through a dynamic denoising schedule. We further propose a video-level fairness evaluation protocol combining VideoLLM-based reasoning with human verification. Experiments on the modern T2V model Open-Sora show that FairT2V substantially reduces demographic bias across occupations with minimal impact on video quality.
Abstract:Trends on short-video platforms evolve at a rapid pace, with new content issues emerging every day that fall outside the coverage of existing annotation policies. However, traditional human-driven discovery of emerging issues is too slow, which leads to delayed updates of annotation policies and poses a major challenge for effective content governance. In this work, we propose an automatic issue discovery method based on multimodal LLM agents. Our approach automatically recalls short videos containing potential new issues and applies a two-stage clustering strategy to group them, with each cluster corresponding to a newly discovered issue. The agent then generates updated annotation policies from these clusters, thereby extending coverage to these emerging issues. Our agent has been deployed in the real system. Both offline and online experiments demonstrate that this agent-based method significantly improves the effectiveness of emerging-issue discovery (with an F1 score improvement of over 20%) and enhances the performance of subsequent issue governance (reducing the view count of problematic videos by approximately 15%). More importantly, compared to manual issue discovery, it greatly reduces time costs and substantially accelerates the iteration of annotation policies.
Abstract:Autonomous navigation is crucial for both medical and industrial endoscopic robots, enabling safe and efficient exploration of narrow tubular environments without continuous human intervention, where avoiding contact with the inner walls has been a longstanding challenge for prior approaches. We present a follow-the-leader endoscopic robot based on a flexible continuum structure designed to minimize contact between the endoscope body and intestinal walls, thereby reducing patient discomfort. To achieve this objective, we propose a vision-based deep reinforcement learning framework guided by monocular depth estimation. A realistic intestinal simulation environment was constructed in \textit{NVIDIA Omniverse} to train and evaluate autonomous navigation strategies. Furthermore, thousands of synthetic intraluminal images were generated using NVIDIA Replicator to fine-tune the Depth Anything model, enabling dense three-dimensional perception of the intestinal environment with a single monocular camera. Subsequently, we introduce a geometry-aware reward and penalty mechanism to enable accurate lumen tracking. Compared with the original Depth Anything model, our method improves $δ_{1}$ depth accuracy by 39.2% and reduces the navigation J-index by 0.67 relative to the second-best method, demonstrating the robustness and effectiveness of the proposed approach.
Abstract:Electronic nose (E-nose) systems face two interconnected challenges in open-set gas recognition: feature distribution shift caused by signal drift and decision boundary failure induced by unknown gas interference. Existing methods predominantly rely on Euclidean distance or conventional classifiers, failing to account for anisotropic feature distributions and dynamic signal intensity variations. To address these issues, this study proposes the Spherical Normalization coupled Mahalanobis (SNM) module, a universal post-processing module for open-set gas recognition. First, it achieves geometric decoupling through cascaded batch and L2 normalization, projecting features onto a unit hypersphere to eliminate signal intensity fluctuations. Second, it utilizes Mahalanobis distance to construct adaptive ellipsoidal decision boundaries that conform to the anisotropic feature geometry. The architecture-agnostic SNM-Module seamlessly integrates with mainstream backbones including Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Transformer. Experiments on the public Vergara dataset demonstrate that the Transformer+SNM configuration achieves near-theoretical-limit performance in discriminating among multiple target gases, with an AUROC of 0.9977 and an unknown gas detection rate of 99.57% at 5% false positive rate, significantly outperforming state-of-the-art methods with a 3.0% AUROC improvement and 91.0% standard deviation reduction compared to Class Anchor Clustering (CAC). The module maintains exceptional robustness across five sensor positions, with standard deviations below 0.0028. This work effectively addresses the critical challenge of simultaneously achieving high accuracy and high stability in open-set gas recognition, providing solid support for industrial E-nose deployment.




Abstract:Recent advances in pretraining general foundation models have significantly improved performance across diverse downstream tasks. While autoregressive (AR) generative models like GPT have revolutionized NLP, most visual generative pretraining methods still rely on BERT-style masked modeling, which often disregards the temporal information essential for video analysis. The few existing autoregressive visual pretraining methods suffer from issues such as inaccurate semantic localization and poor generation quality, leading to poor semantics. In this work, we propose NExT-Vid, a novel autoregressive visual generative pretraining framework that utilizes masked next-frame prediction to jointly model images and videos. NExT-Vid introduces a context-isolated autoregressive predictor to decouple semantic representation from target decoding, and a conditioned flow-matching decoder to enhance generation quality and diversity. Through context-isolated flow-matching pretraining, our approach achieves strong representations. Extensive experiments on large-scale pretrained models demonstrate that our proposed method consistently outperforms previous generative pretraining methods for visual representation learning via attentive probing in downstream classification.
Abstract:Ethical awareness is critical for robots operating in human environments, yet existing automated planning tools provide little support. Manually specifying ethical rules is labour-intensive and highly context-specific. We present Principles2Plan, an interactive research prototype demonstrating how a human and a Large Language Model (LLM) can collaborate to produce context-sensitive ethical rules and guide automated planning. A domain expert provides the planning domain, problem details, and relevant high-level principles such as beneficence and privacy. The system generates operationalisable ethical rules consistent with these principles, which the user can review, prioritise, and supply to a planner to produce ethically-informed plans. To our knowledge, no prior system supports users in generating principle-grounded rules for classical planning contexts. Principles2Plan showcases the potential of human-LLM collaboration for making ethical automated planning more practical and feasible.